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Drell-Yan processes

hadron H;
Vo A e

hadron Hp .
X (arbitrary hadron state)

Used for measurement of W-boson mass and width,
PDF determinations, Higgs discovery, background
to New Physics searches

Region of small gqr«M particularly relevant to
extraction of W mass and reduction of background
to Higgs searches
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Entries/5 GeV

...and at LHC
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Drell-Yan processes

Classical two-scale problem (qgr«M), for
which large Sudakov logarithms ~ (o In”M/qr)"

arise that must be resummed
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Drell-Yan processes

Transverse momentum of Drell-Yan object
(W, Z, H) due to initial-state radiation (ISR)

off collinear partons

Simple example of beam jets described by

beam funCtiOHS in SCET Stewart, Tackmann, Waalew1jn 2009

Yet many surprises and subtleties arise, which
may be relevant also for other applications of

beam functions 1n jet processes



Jet broadening in e*e” annihilation

L R

|
|
|
| —
)’nT
|

Broadening measures transverse momenta

relative to thrust axis:
e
b §Z|pz | = 5;']97, XnT‘

Total and wide broadening defined as:
bT = bL = bR, bW == max(bL, bR)



Jet broadening in e*e” annihilation

L R

|

|

|

| —
)nT

|

Important event shape, relevant for precision

determination of O

Cross section is largest for br,r<Q=Vs, where

resummation of Sudakov logarithms 1s
required for reliable prediction

But so far no all-order factorization theorem
existed for jet broadening
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Soft-collinear factorization in SCET

Common to Drell-Yan at small gt and jet

broadening at small br,r 1s that observables
select final-state partons with small transverse
momenta p; =AM ; A< 1

Partons can be (anti-)collinear, aligned with
initial- or final-state jets, or soft

Describe these 1n soft-collinear effective

theory (SCET) in terms of (anti-)collinear and
soft quark and gluon fields



Soft-collinear factorization in SCET

Relevant effective theory SCET] contains
collinear, anti-collinear, and soft partons with
momenta: 0

p; ~ (A, 1, )M

pé ~ (1, A3, \)M

P~ (MM

| — I

Classical effective Lagrangian contains no
interactions between different modes, implying
a complete factorization:

£SCETH S £C _|_ LE _|_ £S



Soft-collinear factorization in SCET

: Q independent!
It this was true, then:

do ~ H(Q, 1) ¢c(qr, ) oz(qr. 1) S(qr, 1)

But RGE for hard function shows that this

cannot be correct: / Sudakov (cusp) logarithm

2

d
H(Q" p) = {2Fcusp(ozs) In % - 47%48)} )=

dln p

RG invariance of cross section implies that

soft-collinear part ¢. ®»=S must carry some
hidden (anomalous) dependence on Q

— not observed in previous SCET papers on qt resummation:

Gao, L4, Liu 2005; Idilbi, Ji, Yuan 2005; Mantry, Petriello 2009



Soft-collinear factorization in SCET

At classical level, the SCET/ Lagrangian
LSCETH = EC _I_ LE _I_ LS
exhibits certain symmetries, e.g.:

L. is invariant under rescalings p — \p of
anti-collinear jet momentum

Lz is invariant under rescalings p — Ap of
collinear jet momentum

This symmetry is anomalous, not preserved by
regularization (broken to subgroup A\ = 1)

“collinear anomaly” Becher, MN 2010



Soft-collinear factorization in SCET

Not an anomaly of QCD, but of the effective
theory relevant to QCD factorization

In a different context (B—7 form factor),

Beneke called this the “factorization anomal
Dubna lectures 2005

Fact that additional Q dependence arises from
a quantum anomaly gives rise to stringent
constraints, which imply that it exponentiates;
e.g. for Drell-Yan production at small gr:

(Q222) T — exp [~ F(a2, 1) In (Q%22)]
/ \

calculable if xT<A-1 single logarithm



Soft-collinear factorization in SCET

There exist many ways to regularize the loop

graphs giving rise to the anomaly, but dimen-
sional regularization alone 1s not sutficient

Here we use analytic regularization S

Other schemes have been proposed, e.g. the

“rapidity RG”, but their consistency has not

yet been demonstrated beyond 1-loop order
Chiu, Jain, Neill, Rothstein 2011; see also: Manohar, Stewart 2006

For any consistent scheme, final results will be
independent of the regularization procedure



Factorization and Resummation for the
Drell-Yan Cross Section at small gr



Drell-Yan cross section in SCET

Naive soft-collinear factorization:

2
jet function H(Q% p)
T3 1) % e SR

S(AZ, p)

hard function

soft function

In our regularization scheme the soft

contribution 1n this particular case gives rise to
scaleless integrals that vanish



Drell-Yan cross section in SCET

Side remark:

Absence of soft contributions k~(A,A,A) follows

after proper multipole expansion using that x~

(1,1, 'Y, which implies:

(p—k)-z=p-z—k, -2, + O\

Relevant loops integrals such as

1 1 . :
ddk 5 k,2 0 k() ezp-az—sz_-a:J_
/ (n-k—ie) (- k—ie)'*’ gl s

are scaleless and vanish 1n dimensional

regularization



Drell-Yan cross section in SCET

Remaining naive factorization formula:

H(Q*, p

By, B S5 mﬁé&‘i‘iﬁ By

“hard function” ® “transverse PDF” ® “transverse PDF”

Transverse PDF:

1 e AL 0
BQ/N(Zax%nu)ZQ_/dtG : p<N(p)‘x(tn+$J—)§

T

x(0) [N (p))

This spells trouble: well known that transverse PDF
not well defined without additional regulator



Drell-Yan cross section in SCET

Remaining naive factorization formula:

d>o A or? | .
H ¥ d2 —19| %
dM2dgedy  3N,M2s M ) 47r/ =

= Z [ q/N1 617 ajT? :u) BCI/NQ (62,1'%, ,u) -+ (q — q)] o O(W

where: &=vre', &=v7e¥, with r="4

S S

Resummation would then be accomplished by

solving the RGE for the hard function:

d
dln

H(M?, 1) — {zrf;sg S>[1n -~ ] 1y <as>} H(M?, 1)

— see SCET papers by: Gao, 1, Liu 2005; Idilby, J1, Yuan 2005; Mantry, Petriello 2009




Drell-Yan cross section in SCET

Remaining naive factorization formula:

Ao A or? i :
H =S d2 —1q | ‘X |
dM2dg2dy ~ 3N,MZs EtUET e / =

% Z [ q/N1 (EF 5’7T7 ) B/, (&2, x%, u) + (g < q)] s @(W

where: &=vre', &=v7e¥, with r="4

S S

Resummation would then be accomplished by

solving the RGE for the hard ©
wrong’

=0 his must\ bﬂe) (o) | HOM?, 9

P

— see SCET papers by: Gao, Li, Liu 2005; 1dilbs, Ji, Yuan 2005; Mantry, Petriello 2009



Collinear anomaly

RG invariance of the cross section requires

that the product B, /v, (&, 2%, 1) By/n, (&a, 23, 1)
must contain a hidden M dependence

Analyzing the relevant diagrams, we find that
an additional regulator 1s needed to make
transverse PDFs well defined; in the product
of two PDFs this regulator can be removed,
but an anomalous M dependence remains:

. : BV —Fyq(a7,1) g =
[Bq/Nl (Z17 L, /“L) Bq/NQ (227 L, ILL):| o <4€27E ) Bq/Nl (217 L, lu) BC]/Nz (227 L, u)

Wlth quq(iU%, ,u) e
* 2I“cus (&S)
dlIn p s




Collinear anomaly

Regular soft-collinear factorization:

H(Q%, )

J(M?, ) % ﬁ‘j;% @%ﬁgg J(M3, )




Collinear anomaly

Anomalous soft-collinear factorization:

H(Q%, )

Byn, (21, 1) Db:‘fé% 'ﬁ?a @ﬂ%ﬁ%ﬁ EENACARY)

26



Transverse PDFs

“‘What God has joined together, let no man separate...”

The “operator definition of TMP PDFs 1s

quite problematic [...] and 1s nowadays under
active Investigation  Cherednikov, Stefanis 2009

for a review, see: Collins 2003, 2008

for an elegant recent definition, see: Collins 2011

Our result:
Regularization of individual transverse PDF's

1s delicate, but the product of two transverse

PDFs 1s well defined and has a specific

dependence on hard momentum transfer M?



Comparison with the CSS formula

Classic result from Collins-Soper-Sterman: 1985

d*o Aoy 5 . dz dzo
dM? dg3 dy 3NM2347r/dee . LZ ZZ/ /52

1=4,9 7=4,9

Xexp{ /Mb CZ; lln]\j—QA( ())+B( ())]\ [uerm;Ej

/

N

|
1
.‘

X [ﬁq/}\fl (51, xr, ,ub) ﬁq/Ng (527 T, :ub) + (%i A Cja]) ‘
__—_-z :4

Disadvantages compared with our approach:

Hintegral hits the Landau pole of running coupling
and requires PDFs at arbitrarily low scales

practical calculations employ an xr-space cutott,
which introduces some ad hoc model dependence



Comparison with the CSS formula

Classic result from Collins-Soper-Sterman: 1985

d*o 4 5 . dz dzo
dM%lq%dy 3N.M?2s 471'/de_6 . LZ ZZ/ /52

1=4,9 J=49,9

><e:><p{/ﬂ2 CZL lln]\j—QA( (1)) + B(a ())]\ [Merx;Ej

b J

Vo

i

X [ﬁq/}\fl (51, xr, ,LLb) ﬁq/Ng (527 LT, :ub) + (%i — Cja])

i

All-order equivalence to our result, if:
ﬁ(O‘S) dgl(QS)

<SP 2 dog

g1(as) = F(0, ay)

B(as) = 2v%(as) +(g1(cws) — Blas) dga(as ga(as) = In H(—p?, p)

%
Piyn (&, xr) = H(—pip, ) Biyn (€, 5%, o) SO AE T DR oS




Comparison with the CSS formula

Only linear dependence on log(Q) in exponent
can be made consistent with CSS formula!

Non-trivial soft function absent in CSS, too!

Anomaly implies a non-trivial contribution to
A, such that A(a,) # I'jyp(as) In this case!

— missed by all previous SCET analyses:
Gao, 14, Liu 2005; Idilbi, Ji, Yuan 2005; Mantry, Petriello 2009

Can predict unknown 3-loop coefficient of A
based on known 2-loop result for B:

'Y = 538.2 while A® = —930.8  — important effect



Simplification for xr « Al (large qT)

Can perform operator product expansion:
Bi/n (&, T, / _Ifu—g 2, T, ) 0w (/2 1) _I_O(A?QCD r7)

Only the product of two Z;_;(z,z%, ) functions
1s well defined due to the anomaly:

222 —Fag(x7,1) - :
Ae—275 ) ]q<—z'(zla L :u) ]§<—j(227 Ly :u)

[Iq<—z'(zla ZIZ%, :u) Iq<—j(z27 :E%’a :u)} q2 = <

anomalous q2 dependence

Using analytic regulators in the calculation of
these functions 1s very economical, since it

does not introduce any new scales



Simplification for xr « Al (large qT)

Factorized cross section at small gr:

d 9 le 1d22
dM2 dg2 dy 3NM2 Ze 2. >ﬁ/& =

1=¢,9 J=4,9

X [qu—*ij (gla 627 %7 M27 /L) ¢Z/N1 (Zl ,LL) ¢J/N2(Z27 ,LL) = (Q7Z Sl Q7])]

Hard-scattering kernels:

1 . T M2 qCJ(CET 'u)
CQCI—VL']'(Zla <2, q%; M27 ’u) = H(M2’ Iu)_ /dQI_L &= ( . )

47 4e—27E
X [q<—’i(217 ZE%, :u) ]q<_j(22, CI?%, :UJ)
Two sources of M dependence: hard function

and collinear anomaly



Numerical results (preliminary)

Z production, Tevatron

0.10 A

pp—Z+X -0+ X

0.08

prelim, matching to

0.06 - fixed order still missing!

| do 1
o dqy DO -
0.04 - I HoH .
NNLL ¢ DO ete” -
1 .
0.02 ] 1
| :
""‘ggs-%._;
0.00 ‘ =
0 5 10 15 20 25 30

qr [GeV]




(T. Becher, G. Bell, MN, arXiv:1104.4108)



Factorization for jet broadening

Problem that individual jet and soft functions are

not well defined without additional regularization
also arises 1n other factorization theorems

electroweak Sudakov resummation (and any
other process at high Q? with small but

nonzero masses) Ehin:Goll Kelley Manohar 3007

other observables sensitive to transverse
momenta, such as jet broadening  Becher, Bell, MN 2011



Factorization for jet broadening

1 1
Psoft ™ Pcollinear ™ bL ™~ bR < Q

|
N7 Sy
|
|
|

Naive factorization theorem for broadening,
(Jets recoil against soft radiation):

| P
dbs dbs dd 2 dd_2 =
— s d “/ / / / i
X@L bSLaanupR bR_bR7pR7:uXS bSLabSR7 pLa pRv:u)

Non-trivial soft function arises 1n this case,

since radiation 1s restricted to hemispheres



Factorization for jet broadening

1 1
Psoft ™ Pcollinear ™ bL ™~ bR < Q

|
N7 Sy
|
|
|

Laplace (br g — 72.r) and Fourier tranforms
(Pz.r = 2L.r = 22T Rl/TL.R):

% o[ n G N

oo drr dTp

Jet and soft functions must contain a hidden
(anomalous) Q dependence



Anomalous factorization

Have derived the Q dependence of product
O i o, :@L(TLa ZL;NXjR(TRa ZR;NXS(TMTRJ <L) ZR”U)

using invariance under analytic regularization

double logarithm! single logarithms

General result: = — =

In P = G In? (Q2 fLT'R) — Fg(7p, 20, 1) In (Qfo) — Fp(TR, 2r, 1) In (Q27_'1%z)

A
_|_1DW<TL77_R72L7ZR7/L)
with:
® ool =0 ©  Fa(r, 2, 1) = Couspls)
dIn p ey dIn p L e



Anomalous factorization

Gener al re Sult. double logarithm! single logarithms

e e N

In P = G In” (Q2 %Lﬂg) — Fp(71p, 20, 10) In (Qfo) — Fp(Tr, 2R, 1t) In (QQ%}%)

A
—FIHW(TL,TR,ZL,ZR,,U)
with:
©_ ool =0 © Fa(r, 2 1) = Touspls)
dln A dln p s S

Perturbative analysis reveals that k2 = 0 (to all
orders), and:

1 241
Cra, ln(/ﬁ')—l—ln\/ +4Z il - O(a?)

FB(T7Z7ILL) —



Anomalous factorization

First all-order factorization formula:

B
oo AT dTR

Q M/ dZL/ dZR Q27—_L —Fp(71,2L,14) (Q2_}23>_FB(TR’ZR’M)

X W(TLa TRy RLs RRy W

anomalous Q dependence

At NLL order, Mellin inversion can be done
analytically:

d e 1 (bp\
L D7 g S () o)

ol de ['(2n) br
with:
2 . 2 =] o - 2
](77):/ dz s 32< 1+Z+1) : n = FOs (/1) an—Q
o (1+22)¥ 4 s Z

— equivalent to: Dokshitzer, Lucenti, Markesini, Salam 1998
[correcting Catani, Turnock, Webber 1992, who missed the 12(1) term]
— [?(1) term also missed in: Chiu, Jain, Neill, Rothstein 2011



Numerical results (preliminary)

Comparison with ALEPH data (Q=91.2 GeV)

Theory predictions at NLLL order, still without
matching to NLO

e — ALEPH data .— ALEPH data
/ — Theory (NLL) —— Theory (NLL)
| By =bw/Q Br =br/Q

Calculation of NNLL terms desired!



Extension to NINNLL?

Have operator definitions of jet and soft
functions, e.g.:

T

5 (as Tulbpt, ) = Y (280 px = Q) 5k — )

X

< 5(0 = 5 3 In1) OhalOPX) (XIRa(0)10)

For NNLL accuracy we need one-loop jet and
soft functions (latter 1s known) and two-loop

anomaly function Fg(T, 2, i)

Appears doable and worthwhile



Conclusions

Have derived all-order resummed expression for
Drell-Yan cross section at small gr«M

Naive factorization broken by collinear anomaly

Correct SCET analysis reproduces CSS formula

with a nontrivial relation between A and I 'cusp;

predicted A, last missing ingredient for NNLL

Transverse PDFs do not exist as individual
objects;” only products of two PDFs are well
defined, and carry an anomalous M dependence

= They are gauge dependent in the standard treatment and
attected by (dim. unregularized) “rapidity divergences”



Conclusions

Extending these methods, we have derived the

first all-order resummation formula for jet
broadening in e*e” annihilations

Features non-trivial anomalous Q dependence
due to anomaly

NLL results agree with (the correct) known
expressions 1n literature

Calculations necessary to achieve NNLL
resummation appear feasible

Phenomenology in progress
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Short-distance expansion for xr «Agcp

Generalized PDFs at small transverse
separation can be expanded in usual PDFs:

B/N £, 5'7T 1) Z/ _I<—g < xT t) ¢3/N(f/z t) +O(A%QCDZE%) l
|
Byv(esc i) =3 /5 L€/ ) By () + 0N a3) |

Expansion kernels are obtained from matching

calculation

= %m;ﬁ %ﬁ %@lﬁ e

Loy : =




; . -1
Short-distance expansion for xr «Agcp

Collinear loops are not defined and require a
regulator beyond dimensional regularization

Most economic possibility 1s to use analytic

regularization scheme: Smirnov 1993

2
1 Vi

—(p—k)? —ic > (—(p — k)2 — ig]' T

—:ﬂ'

/
J
t

Adaption to SCET collinear propagators:

he

~ hc he e
= - =
)a_> 6 o
e hc
he hc he he he he

he hc =~ he
o i

%
/ nH = V%a n“@ ) p) 1 V%a
. o o . ey 3 o . -t ¢ o
breaks rescaling invariance n-k—ic (n-kn-p—ig)'" == =T =T =

regularized Wilson lines regularized propagator



; . -1
Short-distance expansion for xr «Agcp

Introducing analogous regulator 5 in anti-
collinear sector, we ﬁnd'

= CFO‘ = LL = —2In 5 |) 6(1 - 2) Iy ST
a reg. - de—2E
+6(1 — (—6—2+Li+ ) (1 z)}.

ﬁmg_q;g{(1+LQ[(E;+2m;)5u—z)+&+jh]—@—@}

The product of two such functions 1s regulator

e (o el

Iq<—q(zv f%a 1h)

1ndependent: anomalous hard logarithm

[Iq<—q(zla [IZ%, ,LL) I@*‘Q('ZL .f%, :u)} q2

C g 2 2
R @hmmg)]

_f%%{MLwnki(H%a —u—@1+@ﬁ+@}+0mb

it 1—22 "




Short-distance expansion for xr «Agcp

From previous result we read off:

i
T < ‘
]q<—g(za Li,as) = FOZ Lqu gé\ z(1 — Z g) |

Altarelh Parisi splitting functions

Two-loop result for Fu(L,,a,) Z di(L,) ( ) :

224

q Fgﬁo 2 F q q 808
dQ(LJ_): 9 LJ_—I—FlLJ_—‘rdQ, dZZOFCA 7—284}, —?CFTF’NJJ?




